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Eigenvalue dependence on small pseudointegrable 
perturbation of a two-dimensional box 
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Universitat Kaiserslautern, Fachbereich Physik, 6750 Kaiserslautern, West Germany 

Received 15 August 1983 

Abstract. The eigenvalues of a hard-walled parallelogram-shaped enclosure were investi- 
gated using quantum perturbation theory, the perturbation being a small angle distortion 
of a pair of parallel sides of the rectangle. A comparison of perturbation theory results 
and exact computations for low-lying states showed good agreement. The distribution of 
eigenvalues grossly disturbed from their value in the nearby regular system was studied 
and found to be systematic. 

1. Introduction 

A class of dynamical systems with 2 N  degrees of freedom and N constants of the 
motion which are nevertheless not integrable was first discussed in detail by Richens 
and Berry (1981), who coined the name ‘pseudointegrable’. Such systems produce 
motion which, although largely regular, does also display some unpredictability, charac- 
teristic of chaotic motion. All trajectories of integrable systems lie on N-dimensional 
surfaces in phase space which are topologically equivalent to tori (Arnol’d 1978). 
Trajectories of pseudointegrable systems also lie on N-dimensional surfaces of the 
phase space, but these have the topology of multiply handled spheres. The phase 
flow on an N-torus is described by N smooth independent vector fields; such vector 
fields on a multiply handled sphere, however, have singular points which split beams 
of trajectories. Thus it is not always possible to correlate initially nearby trajectories 
over long times for pseudointegrable systems, and this degree of unpredictability, 
which distinguishes them from integrable systems, is akin to chaotic behaviour where 
neighbouring trajectories separate exponentially with time. 

Therefore, in some sense, pseudointegrable motion can be said to lie between 
integrable and chaotic motion, but it is not the generic case of such non-integrable 
behaviour. A generic perturbation of an integrable system: 

H‘ = Hi“, + &HI, (1) 

results in most of the motion still being confined to tori, with number-theoretically 
determined areas of chaos in regions centred on those unperturbed ‘rational’ tori that 
supported closed orbits. 

t Present address: Imperial College of Science and Technology, Department of Applied Mathematics, 
London SW7 2BZ, UK. 
$ Present address: The Rudjer Boskovic Institute, 41001 Zagreb, Croatia, Yugoslavia. 

523 Q3Q5-4470/84/03Q523 + 12$02.25 @ 1984 The Institute of Physics 



524 Z V Lewis. S Bosanac and H J Korsch 

This result, known as KAM theorem, (Lichtenberg and Lieberman 1983) has been 
proved to hold in the general case for only extremely gentle perturbations where E is 
very small and all derivatives of HI exist (Arnol’d 1978). It is nevertheless widely 
believed that these conditions are more stringent than necessary, and efforts to  reduce 
them are an active field of research (Lichtenberg and Lieberman 1983). 

It is impossible to obtain a pseudointegrable system by such a generic perturbation 
of an integrable system. However, in that their behaviour is largely similar it is possible 
to conceive of a ‘pseudointegrable perturbation’ which, by a small change in some 
parameter, would convert an integrable system into a pseudointegrable one. 

As in previous studies, (Richens and Berry 1981, Henyey and Pomphrey 1982), 
we consider a ‘billiard’ problem, concerning motion within a two-dimensional hard- 
walled container. Such an enclosure in the shape of a rectangle is integrable because 
the absolute values of the velocities in the two directions parallel to the walls are both 
conserved, and together constitute the two constants of the motion required. A generic, 
non-integrable perturbation, such as a small potential variation within the rectangle, 
would give a typical non-integrable system with a mixture of regular and irregular 
motion as described by the KAM theorem. We can perturb the rectangle in a non-generic 
way by slightly altering the boundary conditions: We can consider a parallelogram of 
the same height (and hence same area) with one pair of parallel sides very close to 
the vertical. The perturbation in this case is the small angle they make with the vertical, 
which measures the deviation of the parallelogram from the rectangle. 

In 0 2 a quantum mechanical perturbation theory is presented with which we 
calculate the eigenvalues of the parallelogram for some small angle E. 

The justification for the term ‘pseudointegrable perturbation’ is that any 
parallelogram with angles which are rational fractions of i~ is pseudointegrable. Richens 
and Berry (1981), have shown that any polygon with rational angles which tesselates 
the plane under a translation rule but not under a reflection rule is pseudointegrable. 
They hypothesise further, that irrational angles result in ergodic motion. However, 
there exists as yet no proof for the latter suggestion, although it is also implied by 
Hobson (1975). In that we are studying a small angle perturbation theory there is of 
course no possibility of distinguishing between rational and irrational values, although 
rational numbers being of zero measure amongst real numbers suggest it would be 
sensible to assume irrationality. It is also true, however, that any real number is always 
infinitely close to a rational number so that although the system may be ergodic it is 
always infinitely close to a nearby system with pseudoregular motion. Richens (1983) 
has pointed out that the ergodicity probably arises from ‘holes’ in the smooth phase 
space surfaces, though which orbits can escape to explore the rest of the energy surface. 

In this paper we are concerned with the quantum mechanics of the parallelogram. 
It is surely unphysical to suppose that an infinitely small change in the system can cause 
its behaviour to be so radically altered as the classical picture suggests. We believe 
that the finite size of Planck’s constant smoothes out the classical distinctions and that 
our results reveal a quantum effect which is more general than the classical classifica- 
tions. 

2. Perturbation theory for the parallelogram 

In this section we will develop a perturbation theory for the bound states of a rectangle, 
as its shape alters to that of a parallelogram. Let us assume that the base of the 
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rectangle is of length a and that its height is b, while the perturbation is the angle E ,  

which measures the deviation of the parallelogram from the rectangle. The 
parallelogram is of the same height b, as the rectangle, as shown in figure 1. Perturbation 
problems of this sort are known as ‘boundary perturbation problems’, (Morse and 
Feshbach 1953), with certain specific properties of their own. More usual perturbation 
theory uses the set of eigenfunctions of the unperturbed Hamiltonian (in our case this 
is the Hamiltonian for the rectangle) as a basis in which the eigenfunctions of the 
perturbed Hamiltonian are expanded. However, in the perturbation problem shown 
in figure 1, it is obvious that this method will fail: In the triangular area between the 
right-hand side of the parallelogram and the right-hand side of the rectangle, all the 
unperturbed eigenfunctions are exactly zero and therefore cannot be used there as 
the basis for expansion of the perturbed eigenfunctions. Nevertheless, it is possible 
to formulate a boundary perturbation theory, providing that the perturbed boundary 
is always within the unperturbed boundary. The problem is then solved using standard 
perturbation techniques. 

’t 

Figure 1. Rectangle with sides a, b perturbed by a small angle E to parallelogram of side 
a, height b. 

Here we solve the boundary perturbation problem of the parallelogram without 
making any restrictions on the form of the perturbation, except that it be concave 
everywhere. 

We define the following two sets of eigenfunctions: one in the x and the other in 
the y direction. For a fixed y, smaller than b, the unnormalised functions 

cp,,,(x)=sin[m-;ra-’(x-y tan E ) ]  ( 2 )  
form a complete set on S ,  in figure 1 for any potential which is zero at x = y tan( e )  
and x = a + y tan(€).  Likewise, on the path S ,  in figure 1, the set 

c p n (  y)  = sin( n n b - l y )  (3) 
is the basis in the y direction. With reduced units, ( 2 m / h 2  = 1) any solution of the 
Schrodinger (Laplace) equation 

a2q/ax2 + a 2 q / a y 2  = ( -E  + V I  lgram )q (4) 
for the parallelogram can be written as 

At this point we cannot proceed in the usual way by defining a set of unperturbed 
eigenfunctions of (4), in order to find C,,,n in ( 5 )  as a perturbation series. Instead we 
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use another perturbation approach which does not require definition of the unperturbed 
basis. 

The idea is based on the fact that the eigenvalues of the Hamiltonian are also the 
roots of an equation of the type 

F ( E ;  e )  = 0. (6) 

F is the determinant of H -  E, where H is the Hamiltonian matrix, which in the basis 
(2) and (3) is given by 

[ 1 - (- 1) m + m O ] [  1 - (- 1) tan( E )  "Onno +8- 
ab ( m 2 - m i ) ( n 2 - n i )  ( 7 )  

the indices taking only positive integer values. The matrix elements ( 7 )  are zero for 
m = mo and n = no. 

Equation (6) rewritten as 

Det (H(  E )  - E )  = 0 (8) 

gives the eigenvalues of (4) as functions of e. In the perturbation method, the 
eigenvalues are expanded in the series 

Eq(E)=EkO' +Eb"&+Ef~jE2+.  . . (9) 

where the index 4 designates a set of quantum numbers characterising bound states. 
It has been shown how these expansion coefficients can be found (Bosanac 1980, 

1982), and therefore we will only summarise the final results. We distinguish two 
cases: ( a )  the Hamiltonian matrix is degenerate/non-degenerate and ( b )  the first-order 
perturbation in the Hamiltonian matrix is zero/non-zero on the diagonal. 

To simplify the discussion we will assume that H is non-degenerate for E = O .  It 
can be shown, by expanding ( 7 )  in powers of E ,  that the first-order perturbation of 
the Hamiltonian matrix is zero on the diagonal, and hence, (Bosanac 1982) E r )  = O .  
Therefore the leading perturbation coefficient in (9) is of O ( s 2 ) .  To calculate this 
coefficient we require the expansion coefficients in E of ( 7 ) ,  up to O ( e 2 ) .  These 
coefficients are 
H(0' 

mono,mn = n2( m?i/a2 + ni / b2)  Smm+anq, 

mmOnnO 
[ l - ( - l ) m + m o ] [ l - ( - l ) n + n o ]  

8 H'" =- 
ab ( m2 - m i ) (  n2 - n i )  nono;mn 

therefore 

H ( & )  = H'o'+ E ~ ( l '  + j E 2 ~ ( 2 ) +  0 ( & 3 )  (11) 

Using these results, it can be shown that EL2' is (Bosanac 1982), 
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where the indices m and n designate the quantum numbers of the unperturbed 
eigenvalues 

(13) E ( o )  
m, n m.n. 

If we replace the coefficients in (12) by their explicit values in ( l o ) ,  we obtain 

(15) 
p V ( 1  -(- l )m++)2(l  - ( - l )n+”)2 c 64m2n2 

umn =- 
a2b2 g y f m n  [7r2(p2/a2+ v 2 /  b2) -E?A](m2-p2)2(n2- v’)’’ 

In the double summation we can find the explicit value of one sum, say the sum over 
p. We designate this sum by ukn which is given explicitly by 

p2[1-(-1)”’”]’ 
uLn= c 

w # m  [ p z  + ( a 2 /  b2) vZ-EE,),,  ]( m2 - p2)2 

where 

= m 2 + ( a 2 / b 2 ) n 2  

(16) 

We will show how the sum (16) is calculated for m = odd values, a similar derivation 
can be done for m = even values. 

Firstly, each term in the sum (16) can be separated into three terms, so that ukn 
separates into three sums. These three sums are typically of the form, (Gradstein and 
Ryzhik 1965) 

where we have replaced p by 2p. When the last results are taken into account, then 
(16) is rewritten as 

( 0 )  1/2 

VLJI = a2(v2-n2)  T b 2  
(~ a b : ( a 2 v 2 / b 2 - E m n )  2- n2 *coth [f($ Y ~ - E ? ~ ) ” ~ ] ) .  (19) 

If we take only n =odd values, then umn is 

( 0 )  1/2  64m2n2 7r4b2 b4 v 2 ( a 2 v 2 /  b - Em, ) 
( v 2  - n2l4 am,=- 7r2b2 (64a2n2 ~- 4 7 7 7  a c 

Likewise, if n =even then the summation index Y in (20) takes only odd values. In 
the case where m = even (earlier it was assumed that m = odd), then (20) is the same 
except that the coth function is replaced by a tanh function. Of course, the summation 
index v always takes values depending on the parity of n. 
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From the explicit form for vmn, given by (20), we can now obtain the explicit form 
for E E,),, : 

where m = odd and n =odd. For other combinations of the indices m and n, the rules 
are the same as just mentioned above. 

The expansion coefficients E:,!, are finite and the sum over v is rapidly convergent, 
the largest contribution coming from the vicinity of v - n. However, there are particular 
values of v for which one of the perturbation coefficients is infinite. This is whenever 

[ ( a 2 /  b2) v 2  - 1'" = i A  

where A is an integer; for m =odd, A is even and for m =even, A is odd. The 
relationship (22) is equivalent to 

( a 2 / b 2 ) ( v 2 - n 2 ) = m Z - A 2  (23) 

( a / b ) (  v- n )  = m - A, (24) 

which has a pair of solutions 

( a / b ) (  Y +  n )  = m + A. 

Of course, these are not the only solutions of (22). They give for A and v 

A /  n = a /  b, m /  v = a /  b. (25) 

Therefore, if the ratio of a and b is a rational number then there will always be a 
perturbation coefficient which is infinite. The infinities which appear in the coefficients 
are due to the incompleteness of the non-degenerate perturbation theory. These 
infinities would not be present if for such cases we use perturbation theory for 
degenerate states (condition (22) implies degeneracy in the states ( m ,  n )  and ( A ,  v)). 

However, in general one cannot give a closed form of the perturbation coefficients 
for degenerates states, as was the case with (21), because finding them requires 
diagonalisation of the submatrix corresponding to the degenerate states. Such eigen- 
values are usually not found in an analytic form. Here we will demonstrate how this 
theory works for the simplest case when only two channels are degenerate; say ( m , ,  n , )  
and ( m 2 ,  n2) in which case we can find the analytic solution. As it turns out, in the 
perturbation theory with degenerate states, the first-order perturbation coefficient 
E:,',, is non-zero (Bosanac 1982). This coefficient is found from the equation 

Det(HL" -E" ' )  = 0 (26) 

where Hi1) is the submatrix of (10) which corresponds to the degenerate channels. 
In our case 

32 mlm2nln2  
ab ( m :  - m:)(n:  -n : )  

-_  - (1) 
[ffd 1 m , " l ; m 2 n 2  

hence the two solutions for E'" are 

32 mlm2nln2  
ab ( m :  - m:)(  n;  - n:)  

f- 

which are of course finite. 
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3. Comparison of perturbation theory results with exact computations 

The Schrodinger equation can of course be solved numerically for a two-dimensional 
enclosure with boundary conditions equivalent to a hard-walled parallelogram of 
chosen angle. We used the standard matrix diagonalisation technique in order to find 
the first fifty eigenvalues with m,n =odd, odd or even, even, (for which the solution 
was fully converged), with an angle E =0.81 (see figure 1). This angle is equivalent 
to a value i ~ ’ =  0.0001 (see equation (9)). The results were compared with the results 
of the perturbation theory as shown in figure 2. 

Each point represents the relative difference between an eigenvalue and its corres- 
ponding rectangle value. (For these low-lying states the perturbation theory did not 
predict any energy level crossings so that there was a straightforward correlation 
between rectangle, exact computation, and perturbation theory states.) The points 
were plotted against the rectangle eigenvalues and joined up by straight lines for clarity 
of ordering in the neighbourhood of near-degeneracies. 

As mentioned above, the perturbation theory has not been extended to the case 
of actual degeneracies. Therefore, we chose irrationally related sides for the un- 
perturbed rectangle: 

a 2 /  b2 = 2/(&- I ) ,  

such that the degeneracy condition, 

( m :  - m : ) / ( n :  - n ; )  = a 2 / b ’ ,  

can never be satisfied. All the following numerical results lie within the computational 
limits which do, of course, finally impose rationality on all calculations. 

For most states the difference between the exact and perturbation theory result is 
so small as not to be visible at the scale drawn in figure 2. (When a larger discrepancy 
occurs the perturbation theory results are joined by broken lines.) Although the 
majority of eigenvalues can be seen to be only slightly different from their corresponding 
rectangle values, much larger perturbations occur at near-degeneracies. The corres- 
ponding discrepancies between exact and perturbation theory results are also much 
greater since the perturbation theory tends to predict a proportionately larger change 
in the eigenvalue. 

It is generally the case that the relative difference between the exact and perturbation 
theory result is at least an order of magnitude smaller than the relative difference 
between the rectangle and exactly computed parallelogram eigenvalues. In that the 
perturbation theory is somewhat oversensitive to near-degeneracies, it occasionally 
predicts a considerably larger change in some eigenvalues, (which are also exactly 
relatively greatly disturbed) as can be seen in figure 2 This reflects the fact that the 
perturbation theory sees crossings of energy levels as E is varied although such actual 
degeneracies are rigorously forbidden (von Neumann and Wigner 1927) and result in 
‘avoided crossings’ (Berry 1981a) exactly. In the present computation we did not 
calculate more states exactly than those shown in figure 2, but similar comparisons 
carried out for different values of a and b showed consistently good agreement. It 
was never the case that the perturbation theory predicted a smaller change in the 
eigenvalues than that obtained exactly. 

Figure 3 shows the variation of half the energy levels ( m , n  = odd-odd or even-even) 
as a function of E.  (For this figure only: a = 1.0, b =0.6.) 
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Figure 2. The relative difference between the rec- 
tangle eigenvalues, Eo,  and the corresponding eigen- 
values of the parallelogram with perturbation angle 
E = 0.81". The exact results for the first fifty m + n = 
even states are shown by full circles joined by full 
lines; open circles and broken lines indicate perturbs- 
tion theory discrepancies which are visible on the 
scale drawn. The two horizontal broken lines on 
either side of the Eo-axis are boundaries beyond 
which the modulus of the relative difference between 
rectangle and parallelogram eigenvalues is greater 
than 0.001-i.e. Q >  10 in equation (29). 

Figure 3. Comparison of exact (full curves) and 
perturbation theory (broken curves) energy levels 
as functions of perturbation angle E. Only states with 
n + m = even (for E = 0) are  shown, so that crossings 
of the exact energy levels are rigorously forbidden. 
Note that for this figure only a = 1 .O, b = 0.6. 

The form of the exact energy levels is a complicated structure of multiple avoided 
crossings. The structure is similar to that seen for both ergodic and pseudointegrable 
systems individually (Berry 1981b, Richens and Berry 1981), although the variation 
of E causes the system to fluctuate classically between pseudointegrability and chaos. 
The perturbation theory, however, shows only a simple parabolic dependence on E ,  

(see 0 2) which cannot of course be expected to have any significance for large angles. 
Figure 3 shows clearly the strong sensitivity of the perturbation theory to near- 
degeneracies, and, of course, the expected actual crossings of energy levels. For small 
angles these actual crossings are closely associated with the exactly avoided crossings. 

4. Eigenvalue dependence on perturbation 

The eigenvalues of the rectangle can be obtained directly semi-classically by Bohr- 
Sommerfeld quantisation of the classical actions. The quantum numbers m, n, simply 
pick out those classical tori separated by discrete numbers of Planck's constant, h, in 
the two classical action coordinates. Hence the unperturbed eigenvalues lie on a lattice 
in the classical action plane whose unit cell is of area h2 .  Since our parallelogram is 
designed to represent a perturbation of the rectangle we seek to compare their 
eigenvalues using the action grid of the rectangle as a means of reference. Figure 4 
shows a plot of 68040 states where each point is labelled by a particular m and n. 
The spots mark those eigenvalues which are predicted by the perturbation theory to 
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be grossly perturbed as the rectangle’s shape changes to that of a parallelogram, (the 
others being relatively undisturbed), according to the simple criterion 

The vast majority of these grossly perturbed states lie in well defined regions which 
roughly correspond to areas surrounding certain ‘rational’ tori of the rectangle. The 
rationally related frequencies on the two action circuits of these tori define centres of 
‘resonance’. The distribution of these regions was fitted according to the relation 

-=-(-*-) m a’ r K ( E )  
n 6’ s s2’0 

where r, s define the frequency ratio of a particular torus, K ( E )  is a constant obtained 
empirically from examination of the largest (1,l) resonance. It is clear from the straight 
lines in the figure, which are obtained from equation (30) that this fit is extremely 
good far away from the origin. Closer to the origin we see that the regions of grossly 
perturbed states divide into two parts which lie outside the predictions of equation (30). 

Only half of the rational tori are apparent in figure 4. Those with ‘odd-even’ or 
‘even-odd’ frequency ratios (i.e. ( r ,  s) = (2, 1) or (3,2) etc) do not show large perturba- 
tions of their corresponding quantum eigenvalues. We can understand their absence 
by a closer examination of the perturbation theory and the mechanism whereby some 
states are grossly perturbed. 

It is clear from equation (15) that a large perturbation occurs for near degeneracies 
such that the denominator is very small. We can obtain the condition for their existence 
very simply from the eigenvalue equation. A small energy difference is given as a 
function of m and n by 

A E  = ( a E / a m ) A m  + ( a E / a n ) A n  (31) 

Am,  A n  are defined according to (15) to be 

A m = m - p  An = n - v. (32) 

For a resonance we require (30) to be fulfilled such that 

m / n  = ( a * / b * ) ( r / s ) ,  (33) 

( 2 m / a 2 ) ( m - p ) ~ ( 2 n / b 2 ) ( n - v ) .  (34) 

but we see immediately that (33) is identical with (31) when rewritten (for A E  small): 

Hence we can identify 

r = n - v  s = m - p  (35) 

For ‘odd-even’ frequency ratios of the corresponding tori 

r + s = n - v + m - p = ( n  + v )  + ( m  + p )  - 2 v - 2 p  = odd number. (36) 

However, the nominator in equation (15) is only non-zero if both ( n  + v) and ( m  + p )  
are odd numbers, which contradicts (36), and therefore excludes half the rational tori 
as evinced by figure 4. 
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n 

m 

Figure 4. The action grid of the rectangle enclosing 68 040 states. Those eigenvalues 
(labelled by m,n) which are predicted by the perturbation theory to be grossly perturbed 
in the nearby parallelogram, are marked by black spots; they lie in ‘resonant’ regions, (as 
shown by straight lines) which are centred on certain rational tori of the classical rectangle 
(as labelled). 

The actual widths of the resonances in figure 4 are also dependent on the empirically 
defined constant, K ( E ) .  The E dependence of our K is implicit in the variable choice 
of value assigned to Q in equation (29). 

It is interesting to note that the form of the distribution as given by equation (.30) 
is of the form of the classical KAM theorem. It describes the areas of destroyed tori 
in non-integrable systems which are formed by a small generic perturbation, E ,  of 
integrable systems. We have as yet no explanation as to why it should fit the distribution 
in figure 4. 

Much work has been devoted to conjectures concerning the quantum mechanical 
spectra of systems exhibiting different kinds of classical behaviour. In particular, it 
has been suggested by Percival (1973), that quantum eigenvalues corresponding to 
classically regular and irregular motion are distinguished according to their sensitivity 
to small perturbations. The eigenvalues of the so-called ‘irregular spectrum’ are 
expected to be much less stable than those obtained by torus quantisation. For recent 
discussions see Noid et a1 (1981) and Marcus (1983). 

We appear to be seeing such a distinction, although what is known of the classical 
mechanics of the system does not suggest that any of the eigenvalues should correspond 
to regular torus motion. Had we subjected the rectangular enclosure to a KAM-type 
perturbation of the form of equation (1) the continued existence of tori separated by 
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areas of chaos may well have implied an eigenvalue distribution similar to figure 4. 
The boundary perturbation into a parallelogram implies an essentially chaotic system 
with perhaps some ordering due to the underlying pseudointegrability. There are 
certainly smooth phase space structures existing in the perturbed system e.g. the family 
of simple closed orbits moving vertically between the upper and lower edges of the 
parallelogram. These structures can be interpreted as tori punctured by holes, or 
alternatively, as loose handles of multiply-handled spheres. 

The quantum mechanics does not distinguish between the classical alternatives of 
a highly complex pseudointegrable motion and possible ergodicity of the small-s 
parallelogram. It merely perceives a perturbation of an integrable system which 
radically alters some eigenvalues while leaving others relatively undisturbed. It can 
be hypothesised that those eigenvalues which are not greatly changed by the perturba- 
tion correspond to areas of the classical phase space still occupied by smooth surfaces, 
and that these surfaces can be quantised if their destruction under perturbation is 
limited to holes of size h or less. However, even if this hypothesis should prove correct, 
it does not at all explain why the distribution as shown in figure 4 should be describeable 
by the KAM-type equation (30). What is known of the classical mechanics of the 
parallelogram might have led one to expect a quite random distribution. 

Nevertheless, it is worth pointing out that the index of s in equation (30) is not 
the expected value of 2.5 for a two-dimensional classical system. Quite generally, 
moreover, the derivation of the KAM theorem shows that no classical tori survive under 
a perturbation unless the index of s is greater than 2. Therefore our empirical finding 
of 2.0, although not accurate to less than 0.1, would certainly seem to imply more 
chaos in the system than is the case for a generic perturbation, and may also be taken 
as consistent with the absence of tori classically. Also, if the index of s is not greater 
than 2 the resonant zones of figure 4 will eventually widen to the extent of overlapping, 
such that at very high energies almost all eigenvalues will be predicted to be grossly 
perturbed by the perturbation theory. Thus semiclassically, at least, the results may 
confirm the ergodicity hypothesis. As mentioned above, the ergodicity of the irrational- 
angled parallelogram has not been proved. If the value for the index of s of 2.0 should 
be accurate and also interpretable in classical terms, it could indicate a ‘marginal 
ergodicity’, consistent with an ‘almost existence’ of classical tori. 

5. Conclusions 

The results obtained by the perturbation theory which we have presented here are 
unexpected and therefore not immediately explainable. 

We have found a quantum mechanical effect which is independent of the rapidly 
fluctuating ergodic-pseudoregular underlying classical motion and which may be inter- 
preted as an indicator of quantum chaos. Although the occurrence of large disturbances 
of certain eigenvalues under perturbation can be loosely tied to their near-degeneracy, 
we find no explanation for their ‘classical KAM-type’ distribution in the event of our 
arbitrarily chosen definition of such large disturbances. Given that 

(1) the system is classically always infinitely close to pseudointegrable motion and 
(2) the system under such small perturbation is in some sense close to regular 

motion, 
we can hypothesise that the smooth surfaces which exist in the phase space due to 
statements (1) and ( 2 )  above, are strongly influencing the results. 
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There is some reason to suppose that we may be seeing indications of quantum 
mechanical behaviour which is of far greater generality than the classical mechanics. 
It is possible to conjecture that a ‘KAM-type’ distribution of the kind which we have 
found occurs quite generally in perturbed integrable quantum systems although classical 
theory, at least till now, imposes much stronger conditions on the use of such a 
description. 
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